SFP 1003 1.25G 1310/1550nm&1550/1310nm 20km Transceiver ### Supports 1.25Gbps /1.0625Gbps bit rates - · Bi-Directional LC connector - · Hot pluggable SFP footprint - · SFP 1003-T:1310nm FP laser and 1550nm PIN photo detector - · SFP 1003-R:1550nm DFB laser and 1310nm PIN photo detector - · Applicable for 20Km SMF connection - · Low power consumption, < 0.8W - · Digital Diagnostic Monitor Interface - · Compliant with SFP MSA and SFF-8472 - · Very low EMI and excellent **ESD** protection - · Operating case temperature: Commercial: 0 to 70 °C #### **Applications** Gigabit Ethernet Fiber Channel Switch to Switch interface Switched backplane applications Router/Server interface Other optical links #### Description SFP 1003, SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 20km transmission distance with SMF. The transceiver consists of three sections: a FP/DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA. #### **Functional Diagram** ## **SFP 1003** 1.25G 1310/1550nm&1550/1310nm 20km Transceiver #### **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max | Unit | Notes | |---------------------|--------|------|-----|------|-------| | Supply Voltage | Vcc | -0.5 | 4.0 | V | | | Storage Temperature | Ts | -40 | 85 | °C | | | Relative Humidity | RH | 0 | 85 | % | | Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the transceiver. #### **General Operating Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |----------------------------|------------------|--------|------|------|------|-------| | Data Rate | DR | 1.0625 | 1.25 | | Gb/s | | | Supply Voltage | Vcc | 3.13 | 3.3 | 3.3 | V | | | Supply Current | Icc ₅ | | | 220 | mA | | | Operating Case Temperature | Тс | 0 | | 70 | °C | | | | Ti | -40 | | 85 | | | #### Electrical Characteristics (TOP(c) = 0 to 70 ,Vcc = 3.13 to 3.47 V) #### Transmitter | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |-------------------------------|--------|------|------|---------|------|-------| | Differential data input swing | VIN,PP | 120 | | 820 | mVpp | 1 | | Tx Disable Input-High | ViH | 2.0 | | Vcc+0.3 | V | | | Tx Disable Input-Low | VIL | 0 | | 0.8 | V | | | Tx Fault Output-High | Vон | 2.0 | | Vcc+0.3 | V | 2 | | Tx Fault Output-Low | Vol | 0 | | 0.8 | V | 2 | | Input differential impedance | Rin | | 100 | | Ω | | #### ·Receiver | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |----------------------------|---------|------|------|---------|------|-------| | Diff. Output Voltage Swing | Vout,pp | 340 | 650 | 800 | mVpp | 3 | | Rx LOS Output-High | VROH | 2.0 | | Vcc+0.3 | mVpp | 2 | | Rx LOS Output-Low | Vrol | 0 | | 0.8 | V | 2 | - 1. TD+/- are internally AC coupled with 100Ω differential termination inside the module. 2. Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V. - 3.RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES. # **SFP 1003** 1.25G 1310/1550nm&1550/1310nm 20km Transceiver #### Optical Characteristics (TOP(C) = 0 to 70 °C, VCC = 3.13 to 3.47 V) #### · Transmitter | Parameter | Symbol | Min. | Туре | Max. | Unit | Notes | | | |-------------------------------|----------|--|------|------|------|------------|--|--| | Operating Wavelength | λ | 1270 | 1310 | 1360 | nm | SFP 1003-T | | | | | | 1510 | 1550 | 1570 | | SFP 1003-R | | | | Ave. output power (Enabled) | PAVE | -9 | | -3 | dBm | 1 | | | | Extinction Ratio | ER | 9 | | | dB | 1 | | | | Side-Mode Suppression Ratio | SMSR | 30 | | | dB | | | | | RMS spectral width 1310nm FP | Δλ | | | 3 | nm | | | | | RMS spectral width 1550nm DFB | | | | 1 | nm | | | | | Rise/Fall time (20%~80%) | Tr/Tf | | | 0.26 | ns | 2 | | | | Dispersion penalty | TDP | | | 3.9 | dB | | | | | Output Optical Eye | Compliar | Compliant with IEEE802.3 z (class 1 aser safety) | | | | | | | #### ·Receiver | Parameter | Symbol | Min. | Туре | Max. | Unit | Notes | |----------------------|--------|------|------|------|------|------------| | Operating Wavelength | λ | 1510 | 1550 | 1570 | nm | SFP 1003-T | | | | 1270 | 1310 | 1360 | nm | SFP 1003-R | | Receiver Sensitivity | Pseni | | | -22 | dBm | 3 | | Overload | Pave | -3 | | | dBm | 3 | | LOS Assert | Pa | -35 | | | dBm | | | LOS De-assert | Pd | | | -24 | dBm | | | LOS Hysteresis | Pd-Pa | 0.5 | | | dB | | - 1.Measured at 1250Mb/s with PRBS 2 223 1NRZ test pattern. 2.Unfiltered, measured with a PRBS223 1 test pattern @1.25Gbps 3.Measured at 1250Mb/s with PRBS 223 1 NRZ test pattern for BER < 1x10-12 #### **Pin Definitions and Functions** ## **SFP 1003** 1.25G 1310/1550nm&1550/1310nm 20km Transceiver | PIN# | Name | Function | Notes | |------|-------------|--|-------| | 1 | VeeT | Tx ground | | | 2 | Tx Fault | Tx fault indication, Open Collector Output, active "H" | 1 | | 3 | Tx Disable | LVTTL Input, internal pull-up, Tx disabled on "H" | 2 | | 4 | MOD-DEF2 | 2 wire serial interface data input/output (SDA) | 3 | | 5 | MOD-DEF1 | 2 wire serial interface clock input (SCL) | 3 | | 6 | MOD-DEF0 | Model present indication | 3 | | 7 | Rate select | No connection | | | 8 | LOS | Rx loss of signal, Open Collector Output, active "H" | 4 | | 9 | VeeR | Rx ground | | | 10 | VeeR | Rx ground | | | 11 | VeeR | Rx ground | | | 12 | RD- | Inverse received data out | 5 | | 13 | RD+ | Received data out | 5 | | 14 | VeeR | Rx ground | | | 15 | VccR | Rx power supply | | | 16 | VccT | Tx power supply | | | 17 | VeeT | Tx ground | | | 18 | TD+ | Transmit data in | 6 | | 19 | TD- | Inverse transmit data in | 6 | | 20 | VeeT | Tx ground | | Note 1.When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a $4.7 - 10 \text{K}\Omega$ resistor on the host board. Low (0 – 0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0V~Vcc+0.3V): Transmitter Disabled Open: Transmitter Disabled 3.Mod-Def 0,1,2.These are the module definition pins. They should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. The pull-up voltage shall be between 2.0V~Vcc+0.3V. Mod-Def 0 has been grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID 4. When high, this output indicates loss of signal (LOS). Low indicates normal operation. 5.RD+/-: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. 6.TD+/-: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. #### **Digital Diagnostics Specification** The transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics. | Parameter | Symbol | Units | Min. | Max. | Accuracy | Note | |------------------------------|-----------|-------|------|------|----------|------| | Transceiver temperature | DTemp-E | °C | -5 | +75 | ±5°C | | | Transceiver supply voltage | DVoltage | V | 2.8 | 4.0 | ±3% | | | Transmitter bias current | DBias | mA | 2 | 80 | ±10% | 1 | | Transmitter output power | DTx-Power | dBm | -12 | 0 | ±3dB | | | Receiver average input power | DRx-Power | r dBm | -25 | 0 | ±3dB | | ^{2.}TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7-10K\Omega$ resistor. Its states are: ## **SFP 1003** 1.25G 1310/1550nm&1550/1310nm 20km Transceiver #### **Typical Interface Circuit**